MARKING SCHEME

 No α H is present Ethanol will be converted into ethanoic acid. [Cr(H₂O)₄Cl₂]Cl Tetraaquadichloridochromium(III) chloride The Brownian movement has a stirring effect, which does not allow the particles to settle. 	$ \begin{array}{c c} 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 2 \\ 7 \\ 2 \\ 7 \\ 2 \\ \hline 1 \\ \hline 2 \\ 7 \\ 2 \\ \hline 2 \\ \hline 2 \\ 2 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ \hline 2 \\ 2 \\ \hline 2 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
 3 [Cr(H₂O)₄Cl₂]Cl Tetraaquadichloridochromium(III) chloride 4 The Brownian movement has a stirring effect, which does not allow the 	-
Tetraaquadichloridochromium(III) chloride4The Brownian movement has a stirring effect, which does not allow the	/2 + /2
4 The Brownian movement has a stirring effect, which does not allow the	
5,	1
	±
	1
<i>e</i> ^{7 R} Corresponds to the fraction of molecules that have kinetic energy	1
greater than E _a .	
6 (i) Vinyl chloride does not respond to NaOH and silver nitrate test because	of 1
partial double bond character due to resonance.	
(ii) Hydride ion / H	1
7 $0.05 \text{ MAl}_2(SO_4)_3$ has higher freezing point.	1
0.05 M Al ₂ (SO ₄) ₃ : $i = 5$, $\Delta T_f \propto No$ of particles ; $\Delta T_f = i \times Concentration$	
$= 5 \times 0.05 = 0.25$ moles of ions	1/2
$0.1 \text{ M K}_3[\text{Fe}(\text{CN})_6]: i = 4,$	
$= 4 \times 0.1 = 0.4 \text{ moles of ions}$	1/2
8 $2Cr(s) + 3Fe^{2+}(aq.) \rightarrow 3 Fe(s) + 2 Cr^{3+}(aq.)$	1/2
n = 6	
$E_{Cell} = E_{Cell}^{0} - \frac{2.303RT}{nF} \log \frac{[Cr^{3+}]^{2}}{[Fe^{2+}]^{3}}$	⅔
$E_{Cell} = 0.30 - \frac{0.059}{6} \log \frac{\left[10^{-1}\right]^2}{\left[10^{-2}\right]^3}$	1/2
$E_{Cell} = 0.26 V$	1/2
OR	
1000κ	
$\bigwedge_{m} = \frac{1}{C}$	1/
$1000 \times 4.1 \times 10^{-5}$ 21	1/2
$\wedge_m = \frac{1000 x 4.1 x 10^{-5}}{10^{-3}} = 41 \text{ S cm}^2 \text{ mol}^{-1}$	
\wedge^c	1/2
$\alpha = \frac{\wedge_m^c}{\wedge_m^0}$	72
$\alpha = \frac{41}{390.5} = 0.105$	1/2
390.5	/2
	1/2
	, 2
9 (i) Orthophosphorus acid on heating disproportionates to give	1
orthophosphoric acid and phosphine gas.	

	$4H_3PO_3 \xrightarrow{heat} PH_3 + 3H_3PO_4$			
	(ii) When XeF ₆ undrgoes complete hydrolysis, it forms XeO ₃ . $XeF_6 + 3H_2O \rightarrow 6HF + XeO_3$	1		
10	(i) $Cr_2O_7^{2-}$ (ii) Cerium	1 1		
11	(i) 2,5-Dimethylhexane. (ii)1-Methyl-1-iodocyclohexane. (iii) Nitroethane.			
12	$\Delta T_f = i K_f m$			
	$2.12 = i \frac{5.12 \times 2.5 \times 1000}{122 \times 25}$	1		
	i= 0.505 for association	1/2		
	$i=1-\frac{\alpha}{2}$ $\alpha = 0.99$	1/2		
	Percentage association of benzoic acid is 99.0%	1/2		
13	 (i) Because of H-bond formation between alcohol and water molecule. (ii) Nitro being the electron withdrawing group stabilises the phenoxide ion. (iii) side product formed in this reaction is acetone which is another important organic compound. 			
14	$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$	1		
	$t = \frac{2.303}{60} \log \frac{1}{0.0625}$	1		
	t = 0.0462 s	1		
15	 (i) 'B' is a strong electrolyte. A strong electrolyte is already dissociated into ions, but on dilution interionic forces are overcome, ions are free to move. So there is slight increase in molar conductivity on dilution. 	1 1		
	 (ii) On anode water should get oxidised in preference to Cl⁻, but due to overvoltage/ overpotential Cl⁻ is oxidised in preference to water. 	1		
16	(i) $\frac{x}{m} = kC^{\frac{1}{n}}$	1		
	 (ii) The charge on the sol particles is due to Electron capture by sol particles during electrodispersion. Preferential adsorption of ions from solution. Formulation of electrical double layer. (any one reason) 	1		
	(iii) Molybdenum acts as a promoter for iron.	1		

	1		1 1		
21	(i)	$t_{2g}^4 e_g^0$	1		
	(ii)	sp ³ d ²	1		
	(iii)	optical isomerism	1		
22	(i)	Cr ²⁺	1		
	(ii)	Sc ³⁺	1		
	(iii)	Sc ³⁺	1		
	OR				
	(i)	The high energy to transform Cu(s) to Cu ²⁺ (aq) is not balanced by			
	its hydration enthalpy.				
	(ii)	Mn ²⁺ has d ⁵ configuration(stable half-filled configuration)			
	(iii)	d ⁴ to d ³ occurs in case of Cr ²⁺ to Cr ³⁺ . (More stable t_{2g}^3) while it			
		changes from d ⁶ to d ⁵ in case of Fe ²⁺ to Fe ³⁺ .			
23	(i)	Equanil, Iproniazid, phenelzine(any two)	1/2+1/2		
	(ii)	empathetic, caring, sensitive or any two values can be given.			
	(")		1/2 +1/2		
	(iii)They should talk to him, be a patient listener, can discuss the matter with the				
	psychologist.				
	(iv)If the level of noradrenaline is low, then the signal sending activity becomes low and the person suffers from depression.				
			1		
24) $I_2 < F_2 < Br_2 < Cl_2$	1		
	(ii) $H_2O < H_2S < H_2Se < H_2Te$				
	(b) Gas A is Ammonia / NH ₃				
	(i)) $Cu^{2+}(aq) + 4 NH_3(aq) = [Cu(NH_3)_4]^{2+}(aq)$	1		
	(i) $ZnSO_4(aq) + 2NH_4OH(aq) \rightarrow Zn(OH)_2(s) + (NH_4)_2SO_4(aq)$				
	(1) $2\pi s s_4(mq) + 2\pi m_4 s m(mq) + 2\pi (sm_2(s) + (1)m_4) + 2s s_4(mq)$				
		OR			
	(a) C	IF	1		
	(b)				
	(b)				
		0 0			
			1		
		S S			
	0				
		OH HO			
		Pyrosulphuric acid (Oleum) (H ₂ S ₂ O ₇)			
	(c) N				
		leaching action of chlorine is due to oxidation.	1		
		$Cl_2 + H_2O \rightarrow 2HCl + [O]$	1/2		
	(e) 3	$HNO_2 \rightarrow HNO_3 + H_2O + 2NO$	1/2 1		
			1		

	HCN	+ OH \longrightarrow $:CN + H_2O$				
		$ \begin{array}{c} \overbrace{O}^{\delta} + : \overrightarrow{CN} & \longrightarrow \\ Nucleophile & \overbrace{O}^{C} CN \\ \hline \\ Tetrahedral \\ intermediate \\ \end{array} $				
26	(i)	Ferrimagnetism.	1			
		These substances lose ferrimagnetism on heating and become paramagnetic.	1			
	(ii)	r = 0.414 R	1			
	(iii)	$r = \frac{\sqrt{3}}{4}a$	1			
		$r = \frac{\sqrt{3}}{4} x 316.5$	1/2			
		r = 136.88 pm	1/2			
	(;)	OR Cehettluudefeet				
	(i)	Schottky defect It is shown by ionic substances in which the cation and anion are	1 1			
	of almost similar sizes.					
	(ii)	$r = \frac{\sqrt{3}}{4}a$	1			
	(iii)	$\rho = \frac{zM}{a^3 N_A}$	1/2			
	$8.92 = {(3.0)}$	$\frac{z \ x \ 63}{608 \ x \ 10^{-8} \)^3 \ 6.022 \ x 10^{23}}$	1			
		z = 4 So it is face centred cubic lattice	1/2			

CBSE SAMPLE PAPER CHEMISTRY-2017-18

MM: 70

BLUE PRINT

TIME 3 HRS

No	CHAPTER	VSA	SA-1	SA-11	VBQ	LA	TOTAL
1	SOLID STATE					1(5) (U)	
2	SOLUTIONS		1(2) (U)	1(3) (A)			
3	ELECTROCHEMISTRY		1(2) (A)	1(3) (U)			9(23)
4	CHEMICAL KINETICS	1(1) (R)		1(3) (A)			
5	SURFACE CHEMISTRY	1(1) (R)		1(3) (R)			
6	EXTRACTION OF METALS			1(3) (U)			
7	p-BLOCK		1(2) (U)			1(5) (A)	
8	d AND f BLOCK ELEMENTS		1(2) (R)	1(3) (E&MD)			
9	COORDINATION CHEMISTRY	1(1) Hots		1(3) Hots			7(19)
10	HALOALKANES AND HALOARENES		1(2) (A)	1(3) (A)			
11	ALCOHOLS, PHENOLS AND ETHERS	1(1) (E&MD)		1(3) (U)			
12	ALDEHYDES, KETONES AND CARBOXYLIC ACID	1(1)Hots				1(5) (E&MD)	
13	ORGANIC COMPOUNDS COTAINING NITROGEN			1(3) (A)			
14	BIOMOLECULES			1(3) (U)			10(28)
15	POLYMERS			1(3) (E&MD)			
16	CHEMISTRY IN EVERY DAY LIFE				1(4) (E&MD)		
	Total						26(70)

R-Recall; U-Understanding; A-Application, Hots- Higher Order Thinking Skills-;

E&MD-Evaluation and multidisciplinary