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General Instructions :

(i)  All questions are compulsory.

(ii)) The question paper consists of 30 questions divided into four
Sections — A, B, C and D.

(iii) Section A contains 6 questions of 1 mark each, Section B
contains 6 questions of 2 marks each, Section C contains 10
questions of 3 marks each and Section D contains 8 questions
of 4 marks each.

(iv) There is no overall choice. However, an internal choice has
been provided in four questions of 3 marks each and three
questions of 4 marks each. You have to attempt only one of
the alternatives in all such questions.

(v)  Use of calculators is not permitted.
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SECTION - A

YA TN 1 96 dh AR I 1 ITH H1 ¢ |

Question numbers 1 to 6 carry 1 mark each.

1. k=1 98 AW F1a hifor fores foTq fgama wefiestor (k — 52 + 2(k — 5) x
+2=0hTATAF T |

Find the value of k for which the roots of the quadratic equation
(k—=5x2+2(k—5)x+2=0 are equal.

2.y 1 98 WM Fd shifT &k T foigadt (2, -3) a1 (10, y) % ==
H105HER |

Find the value of y for which the distance between the points
(2,-3) and (10, y) is 10 units.

13
3125

3. fofgu f afe=

1 TIMAD TIR Td 2 31T 3TETd 39l 2 |

Write whether the rational number 3125 has a decimal

expansion which is terminating or non-terminating repeating.

. 1 1+k 1+2k o
4, W%ﬁE, T , ..... s mdl 9 ffgu |
1 1+k 1+2k
Write the mt term of the A.P. kK K o )

5. Af¢sin O+ cos O = \/5 cos (90° — 0) 2, @l cot O T T FTd T |
If sin 6 + cos 6 = \/5 cos (90° — 0), find the value of cot 0.
30(B) 3 [P.T.O.



6. AABC % 379X BC & T Ush W@l DE 39 YehR Wi St & T

%AB@DWHMAC@EWWW%W&=4%W

BD
CE =2 &t g, a1 AE ! TaT3 HTd hiT |
DE is drawn parallel to the base BC of a AABC, meeting AB at

D and AC at E. If g—g= 4 and CE =2 cm, find AE.

g —§
SECTION - B

9T &A1 7 9 12 9 A 9 o 2 37 @ |

Question numbers 7 to 12 carry 2 marks each.

7. Th I H 5 A TG AU S Al A & | TG U § F Th et g
frepTer it wilreRan, T oret Tig feprer st wiRiekar @ o= T '
FTa hifere fob At § fepat fiefl 7 2 |
A bag contains 5 red balls and some blue balls. If the

probability of drawing a blue ball from the bag is three times
that of a red ball, find the number of blue balls in the bag.

8. Ueh GHTA UG o 5 a7 15 o Ue shST: 13 91 —17 2, ol a1’ I
o TUH 21 Yei T I 3Td <hIfSTT |

The 5™ and 15" terms of an A.P. are 13 and —17 respectively.
Find the sum of first 21 terms of the A.P.

9. ¥faets favree Temiten (Euclid’s Division Algorithm) T =
Tk 255 AUT 867 1 0.6, (HCF) F1a il |

Using Euclid’s Division Algorithm, find the HCF of 255 and
867.
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10. =g feig (0, 2) faigati (3, k) a1 (k, 5) & THGEEY &, 1 k 1 9H H1q
I |
If the point (0, 2) is equidistant from the points (3, k) and (k, 5),
find the value of k.

11. ‘@’ o1 O F1d <hifere faes fote WRges Fefishtor m 2x + 3y = 7 e
4x + ay = 14 % 36 §A & |

Find the value of ‘a’ for which the pair of linear equations
2x + 3y =7 and 4x + ay = 14 has infinitely many solutions.

12. 378! TR ¥ %l 5 a1 i 52 A1 hl T H & Th I A5l
fepte T | STReRaT T hifSe foh FeRen TR 9= (i) T e
STCITE B (ii) Teh SHTH 31261 Ueh T[T 2 |
A card is drawn at random from a well shuffled pack of 52
playing cards. Find the probability of getting (i) a red king
(i1) a queen or a jack.

Qs -9
SECTION -C

T G 13 T 22 T Tcdeh U9 3 3 I ¢ |
Question numbers 13 to 22 carry 3 marks each.

13. guiige fop g oft fowg smquifes 4q + 1 312@T 4q + 3 % €9 H1 8
STeIfeh q Teh JUTI 2 |

Show that any positive odd integer is of the form 4q + 1 or
4q + 3 for some integer q.

14. TrE FAT 1 GETS T 3T IHIS o 31 1 G & | 3Thi o TIM
SGe T S dTelt S8 e 98T | 36 S & | HeT S8 id hitT |

The ten’s digit of a number is twice its unit’s digit. The number
obtained by interchanging the digits is 36 less than the original
number. Find the original number.
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15. feigati A(2, 1) a1 B(5, —8) Wl e ol {@r@vs =i foig P e
Q THEWING d @ wafh fog P foag A < @ 7 | IS fog P @
2x —y+k =0 fea &, af k &1 44 31d i |

COC)|
fag P 1 x-fFewrme 36 y-Fcume &1 g 2 | Afg fog P fega
Q(2, —5) 7T R(-3, 6) ¥ GHGEEY 7, dl P o figxImeh HTd HIT |

The line segment joining the points A(2, 1) and B(5, —8) is
trisected at the points P and Q, where P is nearer to A. If P lies
on the line 2x — y + k =0, find the value of k.

OR

The x-coordinate of a point P is twice its y-coordinate. If P is
equidistant from the points Q(2, —5) and R(-3, 6), find the
coordinates of P.

1 .
16. TRTET 6 1,5 AT -2 Th §gig 20% +x% — Sx + 2 H IH ¢ |

1
Show that 1, Eand —2 are the zeroes of the polynomial

2x3 +x2 —5x + 2.

17. fog T o forelt smar foig & forell o ox wii=h 718 woi-tasti &
= 1 10 T¥1 foigal o1 el et TemEe gR g W S v
T BT ¢ |
Prove that the angle between the two tangents drawn from an
external point to a circle is supplementary to the angle

subtended by the line-segment joining the points of contact at
the centre.
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18. A PQR 3hl ST131l PR T QR WX shu: foig S qem T 39 oK & &
6 £ P = ZRTS & | gt f6 ARPQ ~ARTS ® |
3rerE

T queTg Y ABC o o1 BC W foig D 39 wR @ g &6
BD=%BCI&|@W%9AD2=7AB2.

S and T are points on the sides PR and QR of APQR such that
/P = ZRTS. Show that A RPQ ~ A RTS.

OR
In an equilateral A ABC, D is a point on the side BC such that

1
BD =7 BC. Prove that 9AD? = 7AB?.

1 1 1 1
"cosecO+cotO® sin® sin® cosec6—cotH

JAYAT
Ife tan O + sin © = m, tan O — sin 0 = n g, d AT Tk
m? — n? = 4/mn.

19. fag $ifse fw

1 1 1 1
Prove that : cosecO+cot® sin® sin® cosec®—cotO
OR
If tan 6 + sin 6 = m, tan 6 — sin 6 = n, show that
m2 — n2 = 4+/mn

20. T g fSaehl A1 15 &t 8, h1 Teh a1 g oh ohrg T 60° T I
AT L & | < I TS AT T I TS o &A% 1 I |
(1 =3.14 a°1[3 = 1.73 if5w)

A chord of a circle, of radius 15 cm, subtends an angle of 60° at
the centre of the circle. Find the area of major and minor

segments (Take m = 3.14, \/5 =1.73)
30(B) 7 [P.T.O.




21.

22.

12 Gt FI=3 1 T Tl Toh el i SThR S S8 $HS |
I | W R, H ST T ST & | 9t et quiaRn 9 | g9 TR L

N > 5 ~
SRR a9 | T T EX 35 gt I¢ IdT 8 | SRR 9d bl

ST 1A hIT |

YT
Ueh S, TSEehl T8 38k o9 <hl al-{das 8, &1 A™aH, 4 o
s 9Tt Ueh Tt o 3T¥AH o 90 & | 9o o 3TN hl Br=am 31
Eﬁ”\aQ |

A sphere of diameter 12 cm is dropped in a right circular
cylindrical vessel, partly filled with water. If the sphere is
completely submerged in water, the water level in the vessel

5
rises by 35 cm. Find the diameter of the cylindrical vessel.

OR
A cylinder whose height is two-third of its diameter, has the
same volume as that of a sphere of radius 4 cm. Find the radius
of base of the cylinder.

Tt anferept 50 woTgll <6t Sfes 31 qTed # -

HECC ]
)

100 —120(120 — 140/140 — 160{160 — 180{180 — 200

HSIGU
. 12 14 8 6 10
qE&q1

UL 3RSl ol ALY AT FgeTeh 1A ShITT |
The following table gives the daily income of 50 labourers :

Daily 100 —120/120 — 140{140 — 160{160 — 180{180 — 200
Income (%)

Number of 12 14 8 6 10
labourers

Find the mean and mode of the above data.
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Tug -3
SECTION - D

T AT 23 T 30 Tk Tk T 6 4 I 7 |
Question numbers 23 to 30 carry 4 marks each.

23. < 9 o T THcTent Teh Zehl ol 6 8¢ H W Tehd & | e 37T
T T Tehl 1 W 6 T 512 = 91T 7, DI I o9t A J 9

TS Y U Adl @ | FTd hISTT Teh Tt ST 3T hTH hich fehd-

T T Zehl ohl T |

I
x+1 x-1 5
X%%mga%”\awx_l_x+1=g,x¢1,—1

Two taps together can fill a tank in 6 hours. The tap of larger
diameter takes 9 hours less than the smaller one to fill the tank
separately. Find the time in which each tap can fill the tank
separately.

OR
x+1 x—-1 5
x—1 x+1 6

Solve for x : x#1,-1

24, Tag Hifu foh g auEy ISl o &A®ell 1 STTITT SAeh! Ta Y1l
% JTUTA b o7 o SIS EIell 2 |
AT

forg <RI Top wep oIt #, AfS T YT 1 1 19 G Y11 o 1T oh
TSR 7, A1 Tgett YT o FTH T HI0T THHI 7 |

Prove that the ratio of the areas of two similar triangles is equal
to the square of the ratio of their corresponding sides.

OR
Prove that in a triangle, if the square of one side i1s equal to sum
of the squares of the other two sides, the angle opposite the first
side 1s a right angle.
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25. s s ABC frad, BC = 8 @i, £ B = 45° @1 £ C = 30° i
A1 o g feffau | Ot woh 3171 TSt hi T <b ue ot ferfau forereht

e AABC i @ gtﬂaﬁw%ﬂma |

Write the steps of construction for drawing a AABC in which
BC = 8 cm, ZB = 45° and ZC = 30°. Now write the steps of

: : : : 3
construction for drawing a triangle whose sides are ZOf the

corresponding sides of AABC.

26. Tsh T JT o YW n Y&i bl TN 5n2 + 3n B | Al 3HHT m o I
168 2, d@ m T A T ShifTT | 39 At 1 2047 ug +ft 71a HifS |
COCH|
foreft TR 3@t o1 e qun A=W ug shEst: 11 9ur 89 ® | Afe
IR A H 30 UE &, d UG AT 1 hifST a7 I9ehT 23471 Ue

T ST |

The sum of the first n terms of an A.P. is 5n2 + 3n. If its mt
term is 168, find the value of m. Also find the 20" term of the
A.P.

OR

The 4™ and the last terms of an A.P. are 11 and 89 respectively.
If there are 30 terms in the A.P., find the A.P. and its 23" term.

4,

27 Rz i %:[1 sin A l—cosAj.[ cos A l—sinAj

_cosA  sinA 1-sinA cosA
sin A _1—cosA] [ cos A _l—sinAJ
1 —cos A sinA ) 1—-sinA cosA

Prove that : (
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28. T USEd o R W H 1.46 T et qid orfl 8 | {H o T fag |
i o TG 1 3= I 60° 7 HR & foig § Usked & Rrat 1
31T 10T 45° B | USEt shl a8 T I | (/3 = 1.73 =fifsw)

A statue, 1.46 m tall, stands on a pedestal. From a point on the
ground the angle of elevation of the top of the statue is 60° and
from the same point angle of elevation of the top of the pedestal

1s 45°. Find the height of the pedestal. (use\/§ =1.73)

29. YT 4 Teh AT i AT o YSHUT o foTT 3 Sei-ThR g0 g |
fau | afe g 5w Y Br=wm 0.7 ot qen =g 2 M @ O I g
AT Fa hifs | afg g7 T 350 gfq @3 &1 @4 3Tan g,
TRt G g <hT T TR 1 HITT | 38 e B o Yoo gt T

%?(n=% +fifs)

Sudhakar donated 3 cylindrical drums to store cereals to an
orphanage. If radius of each drum is 0.7 m and height 2 m, find
the volume of each drum. If each drum costs ¥ 350 per m3, find
the amount spent by Sudhakar for orphanage. What value is

22
exhibited in the question. (Use = = )
30. = SAferel o1 medes 52.5 B | Afe IRERATST &1 A 100 &, ot

ny%ﬂﬂﬁW@ﬁl‘Q:
T | SRERAT
0-10 2
10 - 20 5
20 —-30 X
30 —40 12
40 — 50 17
50 -60 20
60 — 70 y
70 — 80 9
80 —90 7
90 - 100 4
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The median of the following data is 52.5. If the total frequency
is 100, find the values of x and y.

Classes | Frequency
0-10 2
10 —20 5
20 - 30 X
30-40 12
40 - 50 17
50 -60 20
60 — 70 y
70 — 80 9
80 —90 7
90 — 100 4

30(B) 12



