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All questions are compulsory.
This question paper contains 29 questions.

Questions No. 1 — 4 in Section A are very short-answer type
questions carrying 1 mark each.

Questions No. 5§ — 12 in Section B are short-answer type
questions carrying 2 marks each.

Questions No. 13 - 23 in Section C are long-answer I type
questions carrying 4 marks each.

Questions No. 24 - 29 in Section D are long-answer II type
questions carrying 6 marks each.



Qs A
SECTION A

Jo7 G 1 @4 T J 9P FoT H 1 3F & |
Question numbers 1 to 4 carry 1 mark each.

1. 3 AT B Y Hife 2 ITel a1 3T 39 THN & b |A| = 3d
|IB| =-2 %, @ |3AB| &1 9 fafau |

If A and B are square matrices, each of order 2 such that
|A| =3 and |B| =-2, then write the value of |3AB|.

2. x=2 W |x-5| H EThaS [AREY |
Write the derivative of |x-5| at x = 2.

3. W@ﬁm:

4, Tl 21+ [+ k, yorg ¥ W AW ST ¥ ITHT HETEA
(T AT IR |

Find the cosine of the angle which the vector /2 i+ j+k

makes with y-axis.
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Qs d
SECTION B

Fo7 GEIT5 & 12 T F9% To7 2 375 8 |
Question numbers 5 to 12 carry 2 marks each.

5.

65(B)

e sin‘1[51nx+cosx] =T 3 @ xH OF @ HINT |

J2 T2
If sin~l (sm X\/%COS Xj = g, find the value of x.
AH 19 I
tan [2tan_1 1 — E}
5 4
Evaluate :
tan [2tan_1 1 — E}
5 4
. . ) -1 4
TRfeh fshareti & WM ¥ ST A=[7 20] H1 kA

(A~1) 3ma hifs |

-1 4
Find the inverse (A™1) of the matrix A = [ J, using
7 20

elementary operations.

g Ik y = 26X AU y = ae™* WER Tadq_ Jidesg Hd 8, dl a Hl
oM 7T IS |

If the curves y = 2e* and y = ae™* intersect orthogonally,
find the value of a.



9. dsh y=12X—X3 mﬁ%%ﬁ@aﬁ?ﬁﬁn,aﬁwd}%ﬁﬁ
TGN x-378F o THIG &l |

Find the points on the curve y = 12x — x5, where the tangent
drawn is parallel to x-axis.

10. FTd I :
J.\/XZ _4x+13 dx

Find :

J‘\/Xz —4x +13 dx

11. &AdA ABC % W&dd U Gfew Fd e, &l fag A, B do1 C
HAM: (3,-1,2),(1,—-1,-3)qa (4,-3, 1) % |

Find a vector perpendicular to the plane of ABC, where A, B
and C are points (3, -1, 2), (1, -1, —3) and (4, -3, 1)
respectively.

12. 376 FE, I W 17 8 7% & TATd e & (T #18 W T T&T),
Teh oo U ST U | 3 sl bl =S YhR § et o4 & «e, 3
T IGTHAT Teh IS THehlcAT 71 | Al I8 A1d g b FhIel TT e W
2 ¥ v T 8, df 39 AT % Ush [O9H AT B <hl ATRehdl JTd
HIT |

Eight cards numbered 1 to 8 (one number on one card) are

placed in a box, mixed up thoroughly and then a card is drawn
randomly. If it is known that the number on the drawn card is
more than 2, then find the probability that it is an odd

number.
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Qs H
SECTION C

Y97 G713 T 23 T Y AH JoT 4 HFH E |
Question numbers 13 to 23 carry 4 marks each.

13. HRUTRI < TureEi & FarT § g i o

a b-c¢c c¢+b
a+c b c—a|=(a+b+c)(a2+b2+c?
a—b b+a c
AT

afe A@ i zj = (_27 _i _2] 7, d YR A T

T |

Using properties of determinants prove that :

a b-c c¢+b

a+c b c—a =(a+b+c)(a2+b2+c2)

a—b b+a c

OR

IfA.[l 2 3}:(_7 _i _gj,ﬁndthematrixA.



14. k 1 98 AW F1d shifee e fow = fear = oo fix), x = 0 W

Had gl |
2 — 2 cos 2x
5 ; x<0
X
f(x) = k ; x=0
Jx
;x>0
4+x -2
HAAAT

afr =Y P, dremisufs W oo logx
dx  (1+log x)?

Find the value of k for which the given function f(x) is
continuous at x = 0.

2 — 2 cos 2x
X<

f(x) =

dy = logx

If x¥=e*7Y, show that = ——.
dx @1+ log x)

2
15. I x=a(cost+tsint) 3MW y=a(sint—tcost)%,?ﬁd—}27

dx
T HIfT |
2
If x=a(cost+tsint) and y=a (sint-tcost), find :—327
X
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16. Fd hifomT :

X2
x2 +1) (%2 +4) dx

AT
STd <hIfT
¥ X
—(X =5 ?,) dx
[ (X - 3)
Find :
. 2
2 - 2 dx
J X7 +1)(x“+4)
OR
Find :

J-—(X —5) E;)X dx
(x-3)

17. ¥ 4 IS q .
Y
J- XSll’lX
4+cos
Evaluate.
J- XSll’lX
4+cos
0
18. TIHfciiad 3Tarchet GHishIuT AT =TI B JTd hITIT :

ydx+xlog( )dy 2xdy =0
Find the general solution of the following differential equation :

ydx+xlog( )dy 2xdy =0
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19. 3Taehdd THHT Xyd— (x+2) (y+2) % g fog (1, -1 9
TS AT I3k B 14 ShINT |

For the differential equation xy 3— (x + 2) (y + 2), find the
X

solution curve passing through the point (1, — 1).

20. =z afm § + ) + &k wrofsi 2l +4) 5k sal +2) +3k
% IR i foum # A dfewr % @1y ey UHBA 1 % S g,
@l A o1 HF G T |

A
If the scalar product of the vector i+ 3\ + k with a unit vector

along the sum of vectors 21 + 43'\ - 51/; and AQ + 23\ + 31/; 18
equal to 1, find the value of A.

21. fag P(1, 8, 4) § fagati A0, - 1, 3) @ B(2, - 3, - 1) =l a™
aTeft {1 W Eie T A9 % IGfag o HezMeh J1d hieig | 38 A I
Fars oft Fma hif |
Find the coordinates of the foot of perpendicular drawn from
the point P(1, 8, 4) to the line joining the points A(0, — 1, 3) and
B(2, — 3, —1). Also find the length of this perpendicular.

22. UMl o Teh SIS hl & IR 3IBTAA T fgenl shl T A1 UTRIehdT s
ITd HIFST | 37q: §¢F Rl HIET [Td hINT |

Find the probability distribution of number of doublets in two
throws of a pair of dice. Hence find the mean of the
distribution.

23. A 3R B I0-aR ¥ UTEl & Tsh IS hl IDTA &, & doh feh 390 d
HIS T ITE T T T INTHA 5 ATt o @ hl S T8l odT |
I A TS Dl IE L, Al Ieh S hl SHAT: TTRHATE FTd SHIFT |

A and B throw a pair of dice alternately till one of them gets a
sum of 5, of the numbers on the two dice and wins the game.
Find their respective probabilities of winning, if A starts the
game.
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WuE g
SECTION D

97 GEIT24 T 29 0% F9% o7 F 6 IHH & |
Question numbers 24 to 29 carry 6 marks each.

24.

25.

65(B)

A A=(1,2,3,4,5,6,7,8, 9 8 a9 R 9g<ad A H qRuiiva T
e 2 fh R={(x,y):x,y€ AT x Td y AT dql ST TH &AL
8 A¥ar g1 fowm 3) | g T R U Jodal 99y 8 | 90 A %
aoft gerar &t fafaw |

AAAT
qHT A, — 1 %l Sigt 3 aft arafdes gt &1 9g=ed § ad
T ¢ A H qRTied Tk UE) Tt |kt B foF @t a, be AW
f;vﬂl a*b=a+b+ ab, 3 I%W%(i)*ﬁﬁﬁﬁﬁm
qE=d 8, 31 (ii) BT 0 3HT doadh 379949 2 |
Let R be the relation defined in the set
A=1{1,2,3,4,56,7,8 9 by R={x,y):x,y€e A, xand y are
either both odd or both even}. Show that R is an equivalence
relation. Write all the equivalence classes of set A.

OR

Let A be the set of all real numbers except —1 and let * be a

binary operation on A defined by a*b=a+b+ab, for
YV a, b € A. Prove that (i) * is commutative and associative, and
(i1) number O is its identity element.

31z fafy <y & frfaRaa awieRr fem &1 g | i
5x —y+z=4
3X +2y—5z=2
X+3y—-2z2=5
Solve the following system of equations, using matrix method :
5x —y+z=4
3X +2y -5z =2
X+3y—2z2=395
10



26.

27.

65(B)

3 IATA 1 shifere fod f(x) = sin 3x — cos 3x, 0 < x <7 G Uqd
%o f, (a) R ag9™, qan (b) Fiat &= 2 |
AT

fog ST foh YeT I8 U9 AETH A o T 3™ dad Sl ST,
3Hh ITYR & oI & S &l 2 |

Find the intervals in which the function f given by

f(x) = sin 3x — cos 3x, 0 < x < m is (a) strictly increasing, and
(b) strictly decreasing.

OR

Prove that the height of a solid cylinder of given surface and
greatest volume is equal to the diameter of its base.

I Ik x=y2 WW x=4 ¥ o0 A% W1 x=a U @
SIS AT ferrford 21aT 8, |l a %1 @19 G HINT |

AT
I <h1 A 1 fafa @ Feafaiaa Ffvaa gwmesa 1 9@ 3@ it .
3
I(3X2 + 2x + eX) dx
1

If the area between the curve x = y2 and the line x = 4 is
divided into two equal parts by the line x = a, find the value
of a.

OR
By the method of limit of sum, find the value of the following
definite integral :
3
j (3x2 + 2x + %) dx
1
11 P.T.O.



< -1 y-3 / x—-4 1-y
28. Ty fop W@ X - _ o _ —,-1
2 4 1 3 2

AAAT & | 37d: 37 {G1Al bl 3Tdfase ohid oIl GAAA ohl FHIHT
F1d HIT |
x—1 y—3 zZ

Show that the lines = = and
2 4 -1

x—4 1-y
3 2
the plane containing these lines.

= z — 1 are coplanar. Hence find the equation of

29. Jfe whefm XII w1 U foenmeff, feeht 31y 17 a9 3, 1wt diet-amsfera
40 fFfi/ae $i = @ T 7, @ U @9 T 2 Ui Tt st
2 | Ife ag 70 frdi/ae 6 = @ Ioar B, @ Ui @9 Sget
T 7 9fd fort 81 ST 8 | 38 U Ui W @H A o T T 100 §
qAT 98 Tk HS H 3Mfuehan gt 7 T =Ean B |
(a) STIH I T g T FHE (LPP) &% ®9 § &t il |
(b) oW TIfd W ATET A b FIT AT B ?
(c) T 18 9¥ ¥ H 3 o =l ohl HIC-HTGIhal TAT hl AN

g1 =R ? 0T T |

If a class XII student aged 17 years, rides his motorcycle at
40 km/hr, the petrol cost is ¥ 2 per km. If he rides at a speed of
70 km/hr, the petrol cost increases to ¥ 7 per km. He has
T 100 to spend on petrol and wishes to cover the maximum
distance within one hour.

(a) Express the above as an LPP.

(b) What are the benefits of driving a vehicle at a slow
speed ?

(c) Should a child below 18 years be allowed to drive a
motorcycle ? Give reasons.

65(B) 12 350



