Class -XII PHYSICS SQP Marking Scheme 2019-20

Section – A		
1.	a, $\phi = \frac{q}{6 \in 0}$ (for one face)	1
2.	b , Conductor	1
3.	a , 1Ω.	1
4.	c ,12.0kJ	1
5.	a , speed	1
6.	d, virtual and inverted	1
7.	a, straight line	1
8.	d, 60 °	1
9.	b, work function	1
10.	b, third orbit	1
11.	45° or vertical	1
12.	2 H	1
13.	double	1
14.	1.227 A°	1
15.	60°	1
16.	Difference in initial mass energy and energy associated with mass of products Or Total Kinetic energy gained in the process	1
17.	Increases	1
18.	N ₀ /8	1
19.	0.79 eV	1
20.	Diodes with band gap energy in the visible spectrum range can function as LED	1

$$= 5.7 \times 10^{34} H_{z}$$
(b) As $k_{max} = eV_{0} = 0.6eV$
Energy of photon $E = k_{max} + \omega = 0.6eV + 2.14eV$
 $= 2.74eV$
Wave length of photon $\lambda = \frac{hc}{2\pi} = \frac{4.62 \times 10^{-16} \times 10^{-16}}{2.74 \times 10^{-16}}$
 $= 4530 Å$

26.

centripetal force = electrostatic attraction
 $\frac{mw_{n}^{2}}{m} = \frac{4.62}{4\pi e^{0}} \frac{\pi^{2}}{\pi^{2}}$
 $mv_{n}^{2} = \frac{4}{4\pi e^{0}} \frac{\pi^{2}}{\pi^{2}}$
 $mv_{n}^{2} = \frac{4}{4\pi e^{0}} \frac{\pi^{2}}{\pi^{2}}$
 $mv_{n}^{2} = \frac{4}{4\pi e^{0}} \frac{\pi^{2}}{\pi^{2}}$
 $mv_{n}^{2} = \frac{\pi h}{2\pi m \kappa_{n}^{2}} put in (i)$
 $m \frac{\pi^{2}h^{2}}{4\pi \pi^{2}} \frac{\pi^{2}}{\pi^{2}} = \frac{4\pi e^{0}\pi^{2}}{\pi m e^{0}}$
 $r_{n} = \frac{e0\pi^{2}h^{2}}{\pi m e^{0}}$
 $m = \frac{1}{2} = 3.4eV$
 \therefore energy in ground state = -13.6eV
 $kE = -TE = +13.6eV$
 $E_{n} = mry in ground state x = -13.6eV.$

$$\frac{-6}{5uo} = \frac{1}{125}$$

$$uo = -1.5cm \Longrightarrow v_0 = 7.5cm$$

$$Tube \ length = V_o + |u_e| = 7.5cm + 4.17cm$$

$$L = 11.67cm$$
Object should be placed at 1.5cm distance from the objective lens.