KENDRIYA VIDYALAYA SANGATHAN CHENNAI REGION COMMON PRE-BOARD EXAM Class : XII CHEMISTRY - SCORING KEY

1	Interstitial defect increases the density of a solid	1		
2	A reaction that takes place in one step is called an elementary reaction.			
3	a. Physical adsorption or physisorption b. Chemical adsorption or chemisorption.			
4	Collectors (e.g., pine oils, fatty acids, xanthates, etc.) enhance non-wettability			
	of the mineral particles.			
5	diamminesilver(I)dicyanoargentate(I)	1		
6	H ₃ C CH ₃	1		
	\sim OC_2H_5			
	2-Ethoxy -1,1-dimethylcyclohexane			
7	Acidic Strength : 4-Methoxybenzoic acid <benzoic 4-nitrobenzoic="" acid<="" td=""><td>1</td></benzoic>	1		
8	1. Amylose is water soluble component. Amylopectin is insoluble in water. 2. Chemically amylose	1		
	is a long unbranched chain polymer. Amylopectin is a branched chain polymer.			
~	(Any one difference)			
9	Vapour pressure decreases.	1		
	Mixture of chloroform and acetone forms a solution with negative deviation from Raoult's law.	1		
	This is because chloroform molecule is able to form hydrogen bond with acetone molecule.			
10	i)The sum of powers of the concentration of the reactants in the rate law expression is called the	1		
	order of that chemical reaction.	1		
	ii) The energy required to form intermediate, called activated complex (C), is known as	1		
	activation energy (Ea) (or) Any suitable definition.			
	(or) Factors Influencing Rate of a Reaction:			
	(Any Two of the following (or) any other suitable answer)	2		
	1.Nature of reactants 2.Concentration of reactants (pressure in case of gases),	2		
	3. Temperature and 4. Catalyst .			
11	Rate $(r) = k[A]^n$	1/2		
11	Let the initial Concentration of $[A] = a$	/2		
	$\therefore \text{ Rate } (\mathbf{r}) = \mathbf{k} [\mathbf{a}]^n \qquad(1)$			
	When the initial Concentration is increased three times $[A] = 3a$	1/2		
	i.e, 27 x Rate (r)= k[3a] ⁿ (2)			
	Now, $equ(2)/equ(1) \Rightarrow$	1/2+1/2		
	<u>27 x Rate (r)k[3a]</u> ⁿ (or) 27 = 3 ⁿ (or) (3) ³ = 3 ⁿ \therefore n =3			
	Rate (r) = $k[a]^n$ i.e, Order =3			
12	Electrolytic refining			
12	The impure metal is made to act as anode. A strip of pure metal is used as cathode. They are put	1/2		
	ina suitable electrolytic bathcontaining soluble salt of the same metal. When current is passed	72		
	At Anode: $M \rightarrow M^{n+} + ne-$			
	At Cathode: $M^{n+} + ne \rightarrow M$	1/2		
	ii)Mond's process for refining of Nickel:	/ 2		
	\mathbf{N}_{i} = \mathbf{M}_{i}	1		

 $\begin{array}{cccc} \text{Ni} &+& 4\text{CO} & \underline{330-350 \text{ K}} \rightarrow & \text{Ni}(\text{CO})_{4} & \underline{450-470 \text{ K}} \rightarrow & \text{Ni} &+& 4\text{CO} & 1 \\ \text{Impure} & & \text{volatile complex} & & \text{Pure} \end{array}$

13 Interstitial compounds are those in which small atoms occupy the interstitial sites in the crystal lattice.

Interstitial compounds are well known for transition metals because small sized atoms like H, C 1 or N etc can easily occupy positions in the voids present in the crystal lattices of transition metals.

Depends on the relative magnitude of the crystal field splitting, Δo and the pairing energy, P i)Ligands for which $\Delta o < P$ are known as weak field ligands and form high spin complexes. ii Ligands for which $\Delta o > P$ are known as Strong field ligands and form low spin complexes.

- In aqueous solution, KOH is almost completely ionized to give OH⁻ ions which being a strong nucleophile brings about a substitution reaction on alkyl halides to form alcohols. In aqueous solution, OH⁻ ions are highly hydrated. This reduces the basic character of OH⁻ ions which fail to abstract a hydrogen from the β-carbon of the alkyl chloride to form an alkene. On the other hand, an alcoholic solution of KOH contains alkoxide(OR⁻) ions which being a much stronger base than OH⁻ ions preferentially eliminates a molecule of HCl from an alkyl chloride to form alkenes.
 i) 2Chloroethane +Na -----wurtz reaction----→ butane
- i) 2Chloroethane +Na -----wurtz reaction----→ butane
 ii) Isopropyl alcohol +4I₂+6NaOH ---Heat→ Iodoform
- i) In Methylamine, the alkyl group increases electron density on 'N' making it more basic than NH₃.

ii)Aniline being a Lewis base reacts with Lewis acid ie., $AlCl_3$ to form a salt. As a result Aniline 1 acquires +ive charge and hence its acts as a strong deactivating group for electrophilic substitution reaction. Hence, aniline does not undergo Fridel Crafts reaction.

18 i)Gabriel Phthalimidesysthesis ii)Hoffmann-Bromamide reaction(for correct reaction) 1+1

 $= 289 \text{ pm} = 289 \text{ x} 10^{-10} \text{ cm}$ 19 3 Edge length of Unit Cell (a) $=(2.89 \text{ x } 10^{-8} \text{ cm})^3$ $= (a)^{3}$ ∴Volume of Unit Cell $= 7.2 \text{ g cm}^{-3}$ Density of Unit Cell (ρ) $= 52.0 \text{ g mol}^{-1}$ Gram Atomic Mass (M) Number of atoms per Unit Cell (Z) = ? : Number of atoms per Unit Cell (Z) = $[\rho x (a)^3 x N_0] / [M]$ i.e.,(Z) = $[\rho x (a)^3 x N_0] / [M] = [7.2 x (2.89 x 10^{-8})^3 x 6.022 x 10^{23}] / [52.0]$ = 2The unit cell has 2 atoms : It is Body centre Cubic Unit Cell. (or) $= 3.608 \times 10^{-8} \text{ cm}$ Edge length of Unit Cell (a) = (a)³ $= (3.608 \text{ x } 10^{-8} \text{ cm})^3$ ∴Volume of Unit Cell $\frac{1}{2}$ Density of Unit Cell (ρ) $= 8.92 \text{ g cm}^{-3}$ $\frac{1}{2}$ Number of atoms per fcc Unit Cell (Z) = 4 1/2 : Atomic Mass (M) = $[\rho x (a)^3 x N_0] / [Z] = [8.92 x (3.608 x 10^{-8})^3 x 6.022 x 10^{23}] / [4]$ 1/2+1/2 $\frac{1}{2}$ = 63.07 g/mol

1

1

1

1

 \therefore Atomic mass of the Element = 63.07 u According to question, for NaCl i=2, K_b for water =0.512 K kg mol⁻¹, Molar mass of NaCl 20

 (M_B) =58.44 g Weight of Solute (W_B) =15 g Weight of Solvent (W_A) =250 g $\Delta T_{b} = i K_{b} m = [i x K_{b} x W_{B} x 1000] / [M_{B} x W_{A}] = [2 x 0.512 x 15 x 1000] / [58.44 x 250]$ =1.051 K

: Boiling point of Solution (T_b) = 373 K + 1.05 K = 374.05 K (or) 101.05°C

21 Due to selective adsorption of ions: The particles constituting the dispersed phase adsorb only 1 those ions preferentially which are common with their own lattice ions. i) if silver nitrate solution is added to potassium iodide(excess), the precipitated silver iodide will adsorb negative Γ ions(common ion) from the dispersion medium form a negatively charged sol. 1 $AgNO_3 + KI (Excess) \longrightarrow AgI + I \longrightarrow AgI | I$

ii) if potassium iodide is added to silver nitrate solution (excess), the precipitated silver iodide will adsorb negative Ag^+ ions(common ion) from the dispersion medium form a positively

charged sol.
$$AgNO_3(Excess) + KI \longrightarrow AgI + Ag^+ \longrightarrow AgI | Ag^+$$

	Linear	
23	$_{i)}4 \operatorname{FeCr}_{2}O_{4} + 8 \operatorname{Na}_{2}CO_{3} + 7 O_{2} \rightarrow 8 \operatorname{Na}_{2}CrO_{4} + 2 \operatorname{Fe}_{2}O_{3} + 8 \operatorname{CO}_{2}$	1
		1 1
	$N_{0} C_{T} O_{T} + 2 K C_{1} + K C_{T} O_{T} + 2 N_{0} C_{1}$	

iii)
$$\operatorname{Na}_2\operatorname{Cr}_2\operatorname{O}_7 + 2 \operatorname{KCI} \rightarrow \operatorname{K}_2\operatorname{Cr}_2\operatorname{O}_7 + 2 \operatorname{NaCI}$$

24 A = Phenol, B = Sodium Salicylate,
C = Solicylic ogid D = A cetyl Solicyclic ogid (or) A crivin

Salicylic acid

Acetyl Salicyclic acid (or) Aspirin =Salicylic acid, OH OH)Na COOH (i) CO NaOH $2x^{1/2}$ (ii) H A -Phenol 2-Hydroxybenzoic acid (Salicylic acid) OOH COCH CH_COOH CH.

Acetylsalicylic acid

3 The polymer which degrade in the environment with time are called biodegradable polymers or 26 biopolymers Example: 1) Poly β -hydroxybutyrate – co- β -hydroxyvalerate (PHBV) 2) Nylon -2-nylon-6

27 .i)Any one value. 1 ii)Iproniazid (or)Phenelzine(Nardil) (or) Any other one correct answer 1 iii)Any one help. 1 1/2

i) $Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$ 28

3

1

 $4x^{1/2}$

	$E_{cell} = E_{cell}^{\circ} - 0.0591/2 \text{ x log [anode] / [cathode]}$				
$= [0.34 - (-2.37)] - 0.0591 / 2 \times \log [Mg^{2+}(aq)] / [Cu^{2+}(aq)]$					
$= 2.71 - 0.0591/2 \times \log(0.1M) / (1.0 \times 10^{-3}M)$					
	$= 2.71 \cdot 0.0591/2 \times \log (0.100)/(1.0 \times 10^{-10} \text{ M})$ $= 2.71 \cdot 0.0591/2 \times \log 100$				
$= 2.71 \cdot 0.0591/2 \times 100^{\circ}$ $= 2.71 \cdot 0.0591/2 \times 2$ $= 2.71 \cdot 0.0591$					
				= 2.65 V	1/2
	ii)a)Fuel cells are designed to convert the energy of the combustion of fuels such	1			
as hydrogen, methane etc., directly into electrical energy. b)Fuel cell has high efficiency and eco-friendly (or) suitable answer.					
	(or)	1			
	i) Conductivity (κ) = 1/R x l/a				
	i.e., $0.146 \times 10^{-3} \text{ Scm}^{-1} = 1/1500 \times \text{Cell Constant}$	1/2			
	i.e., $0.146 \ge 10^{-3} \ \text{Scm}^{-1} = 1/1500 \ge 1/1500 \ \text{cell Constant}$ i.e., Cell Constant = $0.146 \ge 10^{-3} \ge 1500 \ \text{i.e.}$, Cell Constant = $0.219 \ \text{cm}^{-1}$.	1/2			
	i.e., Cell Constant = 0.219 cm^{-1} .	1/2			
	ii)Weak electrolytes are those electrolytes which do not dissociate into ions completely.	1⁄2 1			
	E.g., CH ₃ COOH	1			
	Strong electrolytes are those substances which dissociates into ions completely. $E_{\alpha} = N_{\alpha}C_{\alpha}^{\dagger}$	1			
	Eg., NaCl iii) $Y > Z > X$ is the order of reducing power.				
		1			
29	i)Fluorine has no d orbitals	1			
	ii)Iodine is covalent in nature and therefore, it does not dissolve in water which polar. In KI	1			
	solution, iodine reacts to form KI3 which is ionic in nature it becomes soluble in water.				
	iii) Because of increase in atomic sizes and hence increases in van der Waal's forces.iv)Ammonia is a good complexing agent because of the presence of lone pair of electron on	1			
	nitrogen. This lone pair of electron can easily be donated to electron deficient compounds	1			
	forming complexes.				
	v)Nitric oxide (NO) is a clourless gas, when released in air, it immediately changes to nitrogen dioxide(NO2) which has a brown colour. $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$				
	Colourless Brown				
(or)					
	ⁱ⁾ $P_4 + 6Cl_2 \rightarrow 4PCl_3$				

 $\begin{array}{l} P_4 + 6 \text{Cl}_2 \rightarrow 4 \text{PCl}_3 \\ \text{XeF}_4 + \text{SbF}_5 \rightarrow \left[\text{XeF}_3 \right]^* \left[\text{SbF}_6 \right]^- \end{array}$ ii)

 $4\mathrm{H_3PO_3} \rightarrow 3\mathrm{H_3PO_4} + \mathrm{PH_3}$ iii)

iv)
$$2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$$

(cold and dilute)

^{v)}
$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$

(Oleum)

Step 1: Protonation of alkene to form carbocation by electrophilic attack of H_3O^+ .

 $H_2O + H^* \rightarrow H_3O^*$

$$>C = C < + H - O + H \implies H_1 + H_2 = C + H_2 =$$

Step 2: Nucleophilic attack of water on carbocation.

$$\stackrel{\mathrm{H}}{\stackrel{\mathrm{I}}{\xrightarrow{}}}_{-\overset{\mathrm{I}}{\mathrm{C}}} \stackrel{\mathrm{H}}{\xrightarrow{}}_{-\overset{\mathrm{I}}{\mathrm{C}}} \stackrel{\mathrm{H}}{\xleftarrow{}}_{-\overset{\mathrm{I}}{\mathrm{C}}} \stackrel{\mathrm{H}}{\underset{-\overset{\mathrm{I}}{\mathrm{C}}}} \stackrel{\mathrm{H}}{\underset{-\overset{\mathrm{I}}{\mathrm{C}}}}_{-\overset{\mathrm{I}}{\mathrm{C}}} \stackrel{\mathrm{H}}{\xrightarrow{}}_{-\overset{\mathrm{I}}{\mathrm{C}}} \stackrel{\mathrm{H}}{\xrightarrow{}}_{-\overset{\mathrm{I}}{\mathrm{C}}}$$

Step 3: Deprotonation to form an alcohol.

$$\begin{array}{c} H \\ - \overset{H}{C} - \overset{H}{C} - \overset{H}{C} - \overset{H}{O} \overset{H}{-} \overset{H}{H} + \overset{H}{H_2 \overset{H}{O}} \xrightarrow{H} - \overset{H}{C} - \overset{H}{C} - \overset{H}{C} + H_3 \overset{H}{O} \xrightarrow{H} \end{array}$$

b)	i)Carbylamine reaction	- Correct reaction	1		
,	ii)Cross aldol condensation	- Correct reaction	1		
	iii)Rosenmund reduction	- Correct reaction	1		
(or)					
a)Tollen's reagent test Iodoform test (or) any other correct answer					
ii)Neutral FeCl ₃ Test and Iodoform test (or) any other correct answer					
b)i)On nitration of aniline gives metaderivative also because aniline gets protonated which is					
meta c	lirecting.				

ii)Conc.HI is a very strong acid and hence ether gets protonated readily. Also iodine ion is a 1 good necleophile.

iii) SOCl₂ because all the other products are in gaseous state except alkyl halide.

1

30

a)