SAMPLE QUESTION PAPER

Class X Session 2023-24

MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A				
	Section A consists of 20 questions of 1 mark each.				
1.	If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime	1			
	numbers, then the result obtained by dividing the product of the positive integers by the				
	LCM (a, b) is				
	(a) xy (b) xy^2 (c) x^3y^3 (d) x^2y^2				
2.		1			
	The given linear polynomial $y = f(x)$ has (a) 2 zeros (b) 1 zero and the zero is '3' (c) 1 zero and the zero is '4' (d) No zero 4^{-3} -2^{-1} 0^{-1} 1^{-2} 3^{-2} 3^{-1} 3^{-2} 3^{-2} 3^{-1} 3^{-2} 3				

3.	The lines represe	nting the given pair	of linear equations are	non-intersecting. Which of the	e 1
	following stateme	ents is true?		4	
	(a) $\frac{a1}{a2} = \frac{b1}{b2} =$	$=\frac{c1}{c}$		014rc1 = 0 014rc1 = 0 024rc2 = 0	
			,×	01/HCI	
	(b) $\frac{a1}{a2} = \frac{b1}{b2} =$	$\neq \frac{c_1}{c_2}$	-5 -4	-3 -2 10 2 3 4	
	$a1 \downarrow b1$	_ <i>c</i> 1		-3 -2 +102 1 2 3 4 87 -1	
	(c) $\frac{a1}{a2} \neq \frac{b1}{b2}$ =	<u>c2</u>		-2	
	$(d)\frac{a1}{a2} \neq \frac{b1}{b2} =$	$\neq \frac{c1}{c2}$		-3-	
4.		-	equation $9x^2 - 6x - 2 =$		1
	(a) No real ro (c) 2 distinct		(b) 2 equal re (d) More thai		
5.				of one of these is –1 and that of	f 1
	the other is – 8. T	he difference betwe	en their 4th terms is		
	(a) 1	(b) -7	(c) 7	(d) 9	
6.	What is the ratio	in which the line seg	gment joining (2,-3) an	d (5, 6) is divided by x-axis?	1
	(a) 1:2	(b) 2:1	(c) 2:5	(d) 5:2	
7.	A point (x,y) is at	a distance of 5 units	from the origin. How	many such points lie in the third	l 1
	quadrant?				
	(a) 0	(b) 1	(c) 2	(d) infinitely many	
8.	In ⊿ ABC, DE AE	3. If AB = a, DE = x, E	BE = b and EC = c.		1
	Then x expressed	in terms of a, b and	c is: A		
	(a) $\frac{ac}{b}$	(b)	ac		
	b b		$\overline{b+c}$		
	(c) $\frac{ab}{ab}$	(d)	$\frac{ab}{b+c}$ B		
	C		b+c B	E C	
9.	If O is centre of a ci	rcle and Chord PQ ma	kes an angle 50° with the	e tangent PR at the point of contac	t 1
	P, then the angle su	lbtended by the chord	at the centre is	<u>R</u>	
	(a) 130°	(b) 100°			
	(c) 50°	(d) 30°	(o	Q	

10.	A quadrilateral PQRS is drawn to circumscribe a circle. P 12 Q 1					1		
	If PQ = 12 cm	If PQ = 12 cm, QR = 15 cm and RS = 14 cm, then find the length of SP is						
	(a) 15 cm		(b) 14 cm				15	
	(b) (c) 12	2 cm	(d) 11 cm	l		S	14 R	
11.	Given that sin	$\theta = \frac{a}{b}$, then co	osθis.					1
	(a) $\frac{b}{\sqrt{b^2-b}}$	$\overline{a^2}$	(b) $\frac{b}{a}$		(c) $\frac{\sqrt{b^2 - a^2}}{b}$	(d	$\frac{a}{\sqrt{b^2-a^2}}$	
12.	(sec A + tan A)) (1 – sin A) eq	uals:					1
	(a) sec A		(b) sin A		(c) cosec A	(0	l) cos A	
13.	If a pole 6 m	high casts a s	hadow 2 $\sqrt{3}$ n	n long on the	ground, ther	the Sun's ele	evation is	1
	(a) 60°		(b) 45°		(c) 30°	(0	d) 90°	
14.	If the perime	ter and the a	rea of a circle	e are numerio	cally equal, th	nen the radiu	s of the circle	1
	is							
	(a) 2 unit	S	(b) π units		(c) 4 units	(d	l) 7 units	
15.	It is proposed	d to build a n	ew circular p	ark equal in	area to the su	um of areas o	f two circular	
	parks of dian	neters 16 m a	nd 12 m in a	locality. The	radius of the	new park is		
	(a) 10m	(b) 15m	(c) 20m	(d) 24m	
16.	There is a sq	uare board c	of side '2a' ur	nits circumsc	ribing a red	circle. Jayade	ev is asked to	1
	keep a dot o	n the above s	aid board. T	`he probabili	ty that he ke	eps the dot o	on the shaded	
	region is.							
	(a) $\frac{\pi}{4}$	(b)	$\frac{4-\pi}{4}$	(c) ²	$\frac{\pi-4}{4}$	(d) $\frac{4}{\pi}$		
17.	2 cards of hearts and 4 cards of spades are missing from a pack of 52 cards. A card is drawn at 1					1		
	random from the remaining pack. What is the probability of getting a black card?							
	(a) $\frac{22}{52}$		(b) $\frac{22}{46}$		(c) $\frac{24}{52}$	(d)	$\frac{24}{46}$	
18.					1			
	Height [in cm]	Below 140	Below 145	Below 150	Below 155	Below 160	Below 165	
	Number of girls	4	11	29	40	46	51	

	(a) 165	(b) 160	(c) 155	(d) 150			
19.	DIRECTION: In the q	uestion number 19 a	nd 20, a statement of a	ssertion (A) is followed by	1		
	a statement of Reaso	n (R). Choose the cor	rect option				
	Statement A (Assert	ion): Total Surface a	area of the top is the s	sum of the			
	curved surface area of the hemisphere and the curved surface area of the						
	cone.						
	Statement R(Reason) : Top is obtained by joining the plane surfaces of the						
	hemisphere and cone	e together.		v			
			re true and reason (R)	is the correct explanation			
	of assertion (A	7)					
			R) are true and rease	on (R) is not the correct			
	explanation of	assertion (A)					
		s true but reason (R)					
	(d) Assertion (A) i	s false but reason (R)	is true.				
20.	Statement A (Asserti	on): $-5, \frac{-5}{2}, 0, \frac{5}{2}, \dots$. is in Arithmetic Prog	ression.	1		
	Statement R (Reason) : The terms of an A	rithmetic Progression	cannot have both positive			
	and negative rational	l numbers.					
	(a) Both assertion	(A) and reason (R) a	re true and reason (R)	is the correct explanation			
	of assertion (A	<i>(</i>)					
	(b) Both assertio	n (A) and reason (R) are true and rease	on (R) is not the correct			
	explanation of	assertion (A)					
	(c) Assertion (A) is	s true but reason (R)	is false.				
	(d) Assertion (A) i	s false but reason (R)	is true.				
		SE	ECTION B				
	Se	ection B consists of	5 questions of 2 mark	s each.			
21.	Prove that $\sqrt{2}$ is an ir	rational number.			2		
1							

22.	ABCD is a parallelogram. Point P divides AB in the	2
	ratio 2:3 and point Q divides DC in the ratio 4:1.	
	Prove that OC is half of OA.	
	A P B	
23.	From an external point P, two tangents, PA	2
	and PB are drawn to a circle with centre 0.	
	At a point E on the circle, a tangent is drawn	
	to intersect PA and PB at C and D,	
	respectively. If $PA = 10$ cm, find the E	
	perimeter of ΔPCD.	
	B/U	
24.	If tan (A + B) = $\sqrt{3}$ and tan (A – B) = $\frac{1}{\sqrt{3}}$; 0° < A + B < 90°; A > B, find A and B.	2
	[or]	
	Find the value of x if	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	$\frac{1}{4} \operatorname{can} \operatorname{corr} \operatorname{Ic}$	
25.	With vertices A, B and C of \triangle ABC as centres, arcs are drawn with radii 14 cm and the three	2
	portions of the triangle so obtained are removed. Find the total area removed from the	
	triangle.	
	[or]	
	14 cm	
	Find the area of the unshaded region shown in the	
	given figure.	
	3 cm $3 cm$ $3 cm$ $14 cm$	
	///3 cm/////	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	National Art convention got registrations from students from all parts of the country, of	3
	which 60 are interested in music, 84 are interested in dance and 108 students are interested	

	in handicrafts. For optimum cultural exchange, organisers wish to keep them in minimum			
	number of groups such that each group consists of students interested in the same artform			
	and the number of students in each group is the same. Find the number of students in each			
	group. Find the number of groups in each art form. How many rooms are required if each group will be allotted a room?			
27.	If α , β are zeroes of quadratic polynomial $5x^2 + 5x + 1$, find the value of	3		
	1. $\alpha^2 + \beta^2$			
	2. $\alpha^{-1} + \beta^{-1}$			
28.	The sum of a two digit number and the number obtained by reversing the digits is 66. If the	3		
	digits of the number differ by 2, find the number. How many such numbers are there?			
	[or]			
	Solve: - $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$; $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$, x, y>o			
29.	PA and PB are tangents drawn to a circle of centre O from an external point P. Chord AB	3		
	makes an angle of 30° with the radius at the point of contact.			
	If length of the chord is 6 cm, find the length of the tangent PA and the length of the radius			
	[or]			
	Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove			
	that \angle PTQ = 2 \angle OPQ.			
	that \angle PTQ = 2 \angle OPQ.			
30.	that \angle PTQ = 2 \angle OPQ. If 1 + sin ² θ = 3sin θ cos θ , then prove that tan θ = 1 or $\frac{1}{2}$	3		
30. 31.		3		
	If $1 + \sin^2\theta = 3\sin\theta\cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$			
	If $1 + \sin^2\theta = 3\sin\theta\cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$ The length of 40 leaves of a plant are measured correct to nearest millimetre, and the data			
	If $1 + \sin^2\theta = 3\sin\theta\cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$ The length of 40 leaves of a plant are measured correct to nearest millimetre, and the data obtained is represented in the following table.			
	If $1 + \sin^2\theta = 3\sin\theta\cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$ The length of 40 leaves of a plant are measured correct to nearest millimetre, and the data obtained is represented in the following table.Length [in mm]Number of leaves			

		145 150	10		
		145 - 153	12		
		154 - 162	5		
		163 - 171	4		
		172 - 180	2		
	Find the mean length of	the leaves.			
		S	ECTION D		
	Secti	on D consists of	4 questions of 5 mark	s each	
32.	A motor boat whose spe	ed is 18 km/h in s	still water takes 1 hour m	ore to go 24 km upstream	5
	than to return downstre	am to the same s	pot. Find the speed of st	ream.	
			[or]		
	Two water taps togethe	· can fill a tank in	$9\frac{3}{2}$ hours. The tap of larg	ger diameter takes 10	
			0		
	hours less than the smal		tank separately. Find the	e time in which each tap	
	can separately fill the ta	nk.			
33.	(a) State and prove Basis (b) In the given figure \angle Prove that $\frac{AB}{BD} = \frac{AE}{FD}$				5
34.	Water is flowing at the	rate of 15 km/h	through a pipe of diame	ter 14 cm into a cuboidal	5
	pond which is 50 m long	and 44 m wide.	In what time will the leve	el of water in pond rise by	
	21 cm?				
	What should be the spee	d of water if the	rise in water level is to b	e attained in 1 hour?	
			[or]		
	A tent is in the shape of	a cylinder surmo	ounted by a conical top. I	f the height and radius of	
	the cylindrical part are 3	m and 14 m resp	pectively, and the total h	eight of the tent is 13.5 m,	
	find the area of the can	vas required for	making the tent, keepin	g a provision of 26 m^2 of	
	canvas for stitching and	wastage. Also, fin	d the cost of the canvas t	o be purchased at the rate	
	of ₹ 500 per m².				
	1				1

35.			he values of 'p' and 'q', if the sum of all frequencies is	5
	90. Also find the m	ode of the data. Marks obtained	Number of students	
		20 - 30	p	
		30 - 40	15	
		40 - 50	25	
		50 - 60	20	
		60 - 70	q	
		70 - 80	8	
		80 - 90	10	
		SE	CTION E	
	maximum distance Keeping her as a ro to earn gold in Olyr Initially her throw athlete in school, sh mornings and in improve the distand During the special of 40 throws and ever	reached 7.56m only. Bei ne regularly practiced both the evenings and was al ce by 9cm every week. camp for 15 days, she starte y day kept increasing the nu	e. mined ng an in the ole to d with mber	
		chieve this remarkable pro	-	
	(i) How ma	any throws Sanjitha practic	ed on 11 th day of the camp?	1
	(ii) What w	ould be Sanjitha's throw di	stance at the end of 6 weeks?	2
			(or)	
		rill she be able to achieve a		
	(iii) How ma	any throws did she do durir	ng the entire camp of 15 days ?	1
37.	20th July to 20th A nations host in 10 v	ugust 2023 and for the firs	ll tournament is fixed with a monthly timeframe from t time in the FIFA Women's World Cup's history, two the game can be better understood if the position of te plane.	

	G G G G G G G G G G G G G G G G G G G					
	(i) At an instance, the midfielders and forward formed a parallelogram. Find the position of the central midfielder (D) if the position of other players who formed the parallelogram are :- A(1,2), B(4,3) and C(6,6)					
	 (ii) Check if the Goal keeper G(-3,5), Sweeper H(3,1) and Wing-back K(0,3) fall on a same straight line. 	2				
	[or] Check if the Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) and if C is the mid-point of IJ.					
	 (iii) If Defensive midfielder A(1,4), Attacking midfielder B(2,-3) and Striker E(a,b) lie on the same straight line and B is equidistant from A and E, find the position of E. 	1				
38.						

	F Bird F Bird F Height Bo m F Bird F Height B m F F F F F F F F F F F F F F F F F F	
(i)	At what distance from the foot of the tree was he observing the bird sitting on the tree?	1
(ii)	How far did the bird fly in the mentioned time? (or) After hitting the tree, how far did the ball travel in the sky when Kaushik saw the ball?	2
(iii)	What is the speed of the bird in m/min if it had flown $20(\sqrt{3} + 1)$ m?	1